报告题目:A Principal Eigenvalue Problem with Large Advection/ Small Diffusion
报 告 人:彭锐 教授(江苏师范大学)
时 间:2017年5月26日(星期五)下午3:00-4:00
地 点:数学院三楼报告厅
Abstract: In this talk,we shall report our recent progress on a principal eigenvalue problem of a linear second order elliptic operator with large degenerate advection or small diffusion.More specifically,we will study, as the advection coefficient or the diffusion coefficient d,the asymptotic behavior of the principal eigenvalue of the eigenvalue problem
complemented by a general boundary condition.
This problem is relevant to nonlinear propagation phenomena in reaction-diffusion equations. The main point is that the advection (or drift) term allows natural degeneracy. For instance, m can be constant on . A complete understanding of the limiting behavior of the principal eigenvalue is obtained, and new fundamental effects of large advection, small diffusion and boundary conditions on the principal eigenvalue are revealed. In one space dimension, the results in the existing literature are substantially improved.
The talk is based on joint works with Dr. Guanghui Zhang, Huazhong University of Science and Technology,
China
and Dr. Maolin Zhou, University of New England,
Australia
.
彭锐教授简介
彭锐,教授,江苏省特聘教授,入选“教育部新世纪优秀人才支持计划”, 获得“江苏省杰出青年基金”和“江苏省数学成就奖”,入选江苏省“333人才工程”中青年学科带头人。博士毕业于东南大学和澳大利亚新英格兰大学,曾在加拿大纽芬兰大学AARMS和美国明尼苏达大学IMA(美国NSF资助)从事博士后工作, 德国“洪堡学者”获得者。
彭锐目前的主要研究兴趣包括偏微分方程、动力系统理论以及在生物学、传染病学和化学反应等领域的应用。已在Transactions of the American Mathematical Society、Journal of Functional Analysis、SIAM Journal on Mathematical Analysis、Calculus of Variations and Partial Differential Equations、SIAM Journal on Applied Mathematics、Journal of Mathematical Biology、 Physica D、Nonlinearity、Journal of Differential Equations等数学杂志发表学术论文多篇。